

Measuring variability of lime cement columns in lab and field

Jelke Dijkstra (jelke.dijkstra@chalmers.se)

Outline

- Background
- Determination of stiffness
 - E18, Norway
 - Centralen, Göteborg
 - Lärje, Göteborg
- Conclusions & outlook

Background

- Need for system perspective over lifetime of structure
- Track stiffness and alignment is response of more than the track & ballast

Background

Need for system perspective over lifetime of structure

Background

- Geotechnical design of foundations of physical railway infrastructure focused on assessing
 - Stability (ULS)
 - Settlements (SLS)
- For complex projects complemented with assessment of dynamic response of track-foundation-system
 - Whilst meeting track stiffness (of railway structure)
 - Critical track velocities (ULS)
 - Vibrations in the foundation and the soil (SLS)

processes physically linked

analysis is not

what about guidelines?

Background - vibrations

• Peak velocities and arrival times strongly affected by spatial variation of stiffness

Zuada Coelho et al., (2023)

3025-08-20

Background - vibrations

• Peak velocities and arrival times strongly affected by spatial variation of stiffness

Zuada Coelho et al., (2023)

deterministic result

Background - vibrations

- Soft soils are often improved using Dry Soil Mixing
 - Increase in strength
 - Increase in stiffness
- Method increases spatial variability
 - FKPS
 - FOPS
- What about (small-strain) stiffness
 - Can we measure G_s of LCC with geophysical techniques?
 - Link to strength and variation in density?
 - What about time?

2025-08-20

Determination of stiffness (in stabilised clay)

- Seismic methods (non-destructive)
 - Stiffness interpretation is in-direct via measured shear wave velocities
- Laboratory
 - UCT
 - Triaxial test
 - (Cube test, wedge splitting test)
- Empirical via correlation with
 - Strength
 - Fracture energy
 - Electrical resistivity

2025-08-20

Centralen Göteborg

- FKPS and FOPS data from production columns
- Block samples from top layer
 - UCT
 - Cyclic triax
 - Prismatic test + DIC

Centralen Göteborg

6 tests (4 with extensiometer readings)

Laboratory scale

- 1. Unconfined compressive strength test (UCS)
- 2. UCS test with Digital Image Correlation (DIC)

Block samples from field (1 year)

2 tests

Data from depth 2-8 m (40 kg/m³ binder content)

Field scale

- 1. Predrilled Cone Penetration test (FKPS)
- 2. Reverse Cone Penetration test (FOPS)

Data from tests

(1-5 days)

Data from depths10 – 18 m (80 kg/m³ binder content) on 18 m

1 year old samples - 6 UCT tests

Parameter	Low [MPa]	High [MPa]	Standard deviation [MPa]
\mathbf{q}_{u}	1.03	2.56	0.65
E	199	398	68
E ₅₀	211	319	921
E _{local}	589	3122	921

1 year old samples – cyclic triaxial

$$q_{cyc}$$
 = 250 kPa

2025-08-20

UCS test + surface DIC

UCS test + surface DIC

• Sample 1

UCS test + surface DIC

• Sample 2

Vertical scale of fluctuation at field scale

- Accurately assessing stiffness is most important for SLS
- Assume SOF strength == SOF stiffness (may not be the case)
- Few existing methods of assessing stiffness of DSM in the field
- Improved MOPS test
- Field test in collaboration with Dmixab (Nibben Peterzéns & Jorge Yannie)

Spatial variability in LCC

Vertical spatial variability of strength in LCC (Centralen)

Column penetration tests

Spatial variability is characterized by scale of fluctuation (SOF)

Test type	Material	SOF _y
DIC	Sample 1	5.4 mm
	Sample 2	13.0 mm
FKPS	LCC	0.4 m to 3.5 m, 1.4 m (average)
FOPS	LCC	0.3 m to 2.0 m, 0.9 m (average)
CPT	<i>in-situ</i> clay 3-10 m	2.3 m (average)
	<i>in-situ</i> clay 10-50 m	3.4 m (average)

MOPS Test

 Reverse pillar probing with anchor plate at bottom connected to a wire which runs through the column to the ground surface

Figure 3 Test arrangement.

b

(Baker et al., 2005)

MOPS test with DFOS at Lärje

- 28-day old columns
 - 600 mm diameter 10 m length
 - 39 kg/m Multicement
 - Approx ctc 2.5 m
 - Two types of dfos
 - Solifos V1
 - EpsilonSensor 3 mm

Types of sensors

Nerve EpsilonSensor 3 mm diameter

Solifos BRUsens V1

Site location

PEAB site for Trafikverket project

MOPS base plate

Sensor installation method

Tension cable

150 mm

Details of sensor layout in column

PLAN VIEW OF COLUMN

CROSS-SECTION

Installation of fibers using CPT rig

Preparing column surfaces for testing (Week 47 – 48)

Preparing column surfaces for testing (Week 47 – 48)

Test set-up

Testing plan

Column id	Sensor type	Test plan
C2	Solifos	Load to failure
C3	Nerve	Load to failure
C4	Solifos	Load to X% of failure and perform load-unload cycles
C5	Nerve	Load to X% of failure and perform load-unload cycles

FKPS raw data

Filtered
2 to 11 m depth considered

33 2028/28/±2025

 Identify start and end of each load step from LC data and wall clock time

Raw LC and LVDT data from C5

- Take mean of LC and LVDT readings for each load step
- Take mean of fiber strains for each load step

C2 – Before Test

C2 – After Test

Fibre data

C2, load to failure

C2 load displacement curve

- Fiber channel 2
- Displacement estimated from area under strain curve from fibers
- Displacement from fibers smaller than that from LVDT

C5 – Before Test

C5 – After Test

C5, unload 1

C5, load 2

C5, unload 2

C5 load displacement curve, load cycle 1

Conclusions

- Stiffness matters for vibrations
- High spatial resolution required for SOFy, only attained with DFOS at field scale
- Measuring stiffness in Dry Deep Mixed clays is challenging
 - Scale
 - Time
 - Control of environmental conditions
 - Stress level
 - Sample disturbance
 - Column dimensions
 - Binder design
 - Mixing energy
 - etc.

Thanks

- Dawn Wong, Vijashree Sadasivan, Anders Karlsson & Jelke Dijkstra (Chalmers)
- Anders Jonefjäll (PEAB & Chalmers)
- Tim Björkman, Jonatan Isaksson (NCC)
- Nibben Peterzéns (dmixab), Jorge Yannie (GEN Monitoring)
- Kenneth Viking (TRV)

